COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>SCHOOL OF ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>DEPARTMENT OF ELECTRONICS ENGINEERING</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDERGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>2601001</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>1</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>Mathematics I</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES
if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits

<table>
<thead>
<tr>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS (ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory</td>
<td>0</td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE
General Background Course

PREREQUISITE COURSES: None

LANGUAGE OF INSTRUCTION and EXAMINATIONS: Greek

IS THE COURSE OFFERED TO ERASMUS STUDENTS: YES (in English)

COURSE WEBSITE (URL): http://vplace.teipir.gr/hn_math1

(2) LEARNING OUTCOMES

Learning outcomes
The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon successful completion of this course module students possess advanced knowledge, skills and competences in the subject of Mathematics that enable them to:

1. Solve linear systems of equations using Linear Algebra;
2. Solve linear systems of equations with complex numbers;
3. Know and be able to explain by sketching the physical meaning of derivates and integrals;
4. Apply taught methods to calculate integrals; use derivatives and integrals to solve problems in physics / mechanics;
5. Apply taught methodology in problem solving of other fields of science and technology, in real life contexts;
6. Use vector analysis and its basic operations (inner product, angle, external product, etc) in analyzing problems and synthesizing solutions;
7. Assess different methods for the synthesis of solutions to real-life problems and select the
appropriate for the problem at hand;

8. Work in a group on analyzing and solving problems given as group assignments during the semester.

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

Search for, analysis and synthesis of data and information, with the use of the necessary technology	Project planning and management
Adapting to new situations	Respect for difference and multiculturalism
Decision-making	Respect for the natural environment
Working independently	Showing social, professional and ethical responsibility and sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment
Production of new research ideas	Others...

• Search for, analysis and synthesis of data and information, with the use of the necessary technology
• Working independently
• Team work

(3) COURSE CONTENT

Lectures:

1. Introduction to Vector Analysis.
2. Inner product, external product, angle, vector measure.
5. The N-th roots of unity.
6. The N-th roots of a complex number.
7. Calculating powers of complex numbers.
8. Introduction to matrices.
12. Introduction to integrals and basics calculating methods.
13. Integrated problems solving; applications in physics and mechanics; real-life problems addressed through derivatives and integrals.

(4) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Face to face lectures</th>
</tr>
</thead>
</table>
| USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY | • Use of electronic presentation with multimedia content in class,
• Student support through the course webpage and the departmental e-learning platform,
• Electronic communication of instructors and students, through the course webpage and by e-mail. |
| TEACHING METHODS | Lectures, assignments, study. |
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester workload (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>52</td>
</tr>
<tr>
<td>Study for lectures</td>
<td>52</td>
</tr>
<tr>
<td>Homework Assignments</td>
<td>52</td>
</tr>
<tr>
<td>Study and preparation for exam</td>
<td>24</td>
</tr>
<tr>
<td>Course Total</td>
<td>180</td>
</tr>
</tbody>
</table>

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

Student evaluation is performed in the language of instruction.

Final written exam on all taught material (70%)

Homework Assignments turned in during the semester (30%)

(5) ATTACHED BIBLIOGRAPHY

Essential reading

Recommended Books

Linear Algebra, G. Strang.