COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>ENGINEERING SCHOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>CIVIL ENGINEERING DEPARTMENT</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDERGRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>2302516</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>2</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>INTRODUCTION TO ARCHITECTURAL DESIGN</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

<table>
<thead>
<tr>
<th>LABORATORY EXERCISES</th>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory exercises</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

<table>
<thead>
<tr>
<th>COURSE TYPE</th>
<th>Special background, skills development</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREREQUISITE COURSES:</td>
<td>TECHNICAL DRAWING</td>
</tr>
<tr>
<td>LANGUAGE OF INSTRUCTION and</td>
<td>Greek</td>
</tr>
<tr>
<td>EXAMINATIONS:</td>
<td></td>
</tr>
<tr>
<td>IS THE COURSE OFFERED TO</td>
<td></td>
</tr>
<tr>
<td>ERASMUS STUDENTS</td>
<td></td>
</tr>
</tbody>
</table>
Learning outcomes
The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.
Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon completion of the course, the successful student will be able to:
1. Recall the principles and methods of Technical Drawing techniques.
2. Explain the various symbols in architectural drawings relating them with the necessary acknowledgements in the scale 1:50.
3. Apply the methodology of describing the three-dimensional objects in two-dimensional views in the built environment scale.
4. Organize a complete presentation file of the architectural design of a building in a scale 1:50 using the professional language of drawing and the appropriate dimensions of usual construction elements.
5. Analyze and combine the functional requirements of a dwelling and answer the basic organization of the interior space following the anthropometric data.
6. Interpret and compare the construction and architectural elements dimensions in the scale 1:50.

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?
- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Working in an international environment
- Working in an interdisciplinary environment
- Production of new research ideas
- Project planning and management
- Respect for difference and multiculturalism
- Respect for the natural environment
- Showing social, professional and ethical responsibility and sensitivity to gender issues
- Criticism and self-criticism
- Production of free, creative and inductive thinking
- Others...

Search, analysis and synthesis of data and information, using the necessary geometric representation principles and the construction elements basics.
Adapting to new situation: complete description and appropriate presentation of information as to the idea or the objet under investigation could be realized.
Decision making: synthesis of requirements and basic architectural standards.
Generate new ideas: promoting creative thinking to approach the dwelling functions organization.
Work autonomously as well as in teams.

(3) COURSE CONTENT

Modules
Introduction to the basic construction parts of a building; plans, sections and views; methodology, symbols and simplifications in the 1:50 scale.
Anthropometrics and Ergonomics; analysis and synthesis in house shells.
General design outlines during the project of a two-storey (with basement and
terrace) house. Drawing of basic bioclimatic features (*Trombe* wall, sun-blinds, categories of plants according with the building orientation, green roofs). Drawing methodology for staircases.

Analysis
3-4. Plan, sections and views of a 2-storey traditional house, typical of the mainland of Greece (bearing structure: stone /roof /basement/staircase).
5-6-7. Plan, sections and views of a 1-storey modern house (bearing structure: reinforced concrete). Organization of the interior according with the anthropometric data and the ergonomic standards.

(4) Teaching and Learning Methods - Evaluation

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Lectures (for theoretical background strengthening) and exercises, face-to-face.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEACHING METHODS</td>
<td>Activity</td>
</tr>
<tr>
<td></td>
<td>Lectures</td>
</tr>
<tr>
<td></td>
<td>Laboratory exercises</td>
</tr>
<tr>
<td></td>
<td>Homework and study</td>
</tr>
<tr>
<td></td>
<td>Course total</td>
</tr>
</tbody>
</table>

Evaluation language: Greek.

Evaluation procedure
- written examination (80%) -- problem solving,
- laboratory work (20%).

All criteria are accessible to students through the open courses.
ATTACHED BIBLIOGRAPHY

Main sources in Greek language

Main sources in foreign language
Royal Institute of British Architects (2011), A guide for assisting living “towards LifeHome 21”, UK: RIBA.