COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>ENGINEERING SCHOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADEMIC UNIT</td>
<td>CIVIL STRUCTURES DEPARTMENT</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDER GRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>3533</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>3°</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>Building Installations</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

If credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits.

<table>
<thead>
<tr>
<th>WEEKLY TEACHING HOURS</th>
<th>CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>4</td>
</tr>
</tbody>
</table>

5 (total)

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

Skills development

PREREQUISITE COURSES:

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek (official)

IS THE COURSE OFFERED TO ERASMUS STUDENTS

NO

COURSE WEBSITE (URL)

http://civil.teipir.gr
Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The objective of the course is to help the student:

- to obtain a profound and complete knowledge of modern technology applied to building installations. Specifically, to get familiar with the main types of building installations and the relative regulations applied.
- to be able to recognize the components of a building installation.
- to understand the calculations which have to be made and the selection criteria which have to be applied in order to have the optimum selection, construction and synthesis of the above components.
- to be able to design building installations

Upon successful completion of this course the student will be able to:

- Understand the basics and individual characteristics of Building installations.
- Study and management of buildings installations.
- Evaluate comparing different systems applicable to building installations.
- Analyzes and calculates the basics and components of a building installation.

Specifically, students will be able to:

- To describe and identify the parts, to choose the functions and operations of a building installation.
- To explain the operation of a building installation, to assess performance and to calculate the operating parameters.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

<table>
<thead>
<tr>
<th>General Competence</th>
<th>The course aims at the following</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for, analysis and synthesis of data and information, with the use of the necessary technology</td>
<td>Search for, analysis and synthesis of data and information, with the use of the necessary technology</td>
</tr>
<tr>
<td>Adapting to new situations</td>
<td>Project planning and management</td>
</tr>
<tr>
<td>Decision-making</td>
<td>Respect for difference and multiculturalism</td>
</tr>
<tr>
<td>Working independently</td>
<td>Respect for the natural environment</td>
</tr>
<tr>
<td>Team work</td>
<td>Showing social, professional and ethical responsibility and sensitivity to gender issues</td>
</tr>
<tr>
<td>Working in an international environment</td>
<td>Criticism and self-criticism</td>
</tr>
<tr>
<td>Working in an interdisciplinary environment</td>
<td>Production of free, creative and inductive thinking</td>
</tr>
<tr>
<td>Production of new research ideas</td>
<td>Others...</td>
</tr>
<tr>
<td></td>
<td>......</td>
</tr>
</tbody>
</table>

The course aims at the following:

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Decision-making
- Working independently
- Team work
- Working in an international environment
- Working in an interdisciplinary environment
- Project planning and management
- Respect for the natural environment
- Production of free, creative and inductive thinking

(3) SYLLABUS

PART A: Mechanical Installations
- Interior Water Supply and Sewerage installations of buildings.
- Natural Gas Applications in Buildings. Basics.
- Standards and regulations. Definitions.
- Basic components. Basic Calculations – Understanding of Mechanical Installations Designs

PART B: Electrical Installations
- Classification of electrical installations. Definitions. Basic components.
- Safety. Dangers and safety from electrocution.
- Conductors and wires. Pipes and components.
- Control, safety and outage devices. Voltage and current diversion switches.
- Boards of low voltage electrical installations.
- Ground of residences and business premises.
- Basics on study, design and construction of low voltage electrical installations.
- Basic Lighting Circuits. Connections of fluorescent lamps.

(4) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Face-to-face, Distance learning, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY</td>
<td>Teaching using ICT, Communication and Electronic Submission</td>
</tr>
<tr>
<td>TEACHING METHODS</td>
<td>The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.</td>
</tr>
<tr>
<td>Activity</td>
<td>Semester workload</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Lectures</td>
<td>156</td>
</tr>
<tr>
<td>Course total</td>
<td>156</td>
</tr>
</tbody>
</table>

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, etc.

Specifically-defined evaluation criteria are given, and if and where they are accessible to

Written examination: 100%
(5) ATTACHED BIBLIOGRAPHY

7. Schulz K. / οικιακές εγκαταστάσεις υγιεινής / έκδοση Παπασωτηρίου.
16. Β. Μπιτζιώνη, (2008), ΣΥΓΧΡΟΝΕΣ ΗΛΕΚΤΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ, Τζιόλα
17. Ν. Κιμουλάκης, (2006), ΚΤΙΡΙΑΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ, Παπασωτηρίου
18. Στ. Τουλόγλου, (2004), ΗΛΕΚΤΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΚΤΙΡΙΩΝ, ΙΩΝ
19. Απ. Μαχά, ΜΕΛΕΤΗ και ΣΧΕΔΙΑΣΗ ΗΛΕΚΤΡΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ, Εκδόσεις:ΤΕΧΝΟΛΟΓΙΑ
20. Ν. Κιμουλάκης, (2006), ΚΤΙΡΙΑΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ, Εκδόσεις:ΠΑΠΑΣΩΤΗΡΙΟΥ
21. Σημειώσεις διδασκόντων.