(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>ENGINEERING SCHOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT</td>
<td>CIVIL ENGINEERING DEPARTMENT</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDER GRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>2304517</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>4th</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>Statics I</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

If credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits.

<table>
<thead>
<tr>
<th>Lectures</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

Specialized Knowledge-course, skills development

PREREQUISITE COURSES:

YES (Mechanics I)

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek (official)

IS THE COURSE OFFERED TO ERASMUS STUDENTS:

NO

COURSE WEBSITE (URL):

(2) LEARNING OUTCOMES

Learning outcomes
The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A
• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
• Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
• Guidelines for writing Learning Outcomes

Upon completion of the course, students will be able to:

1. Have acquired in-depth knowledge and critical understanding of the theory and principles of Statics, in order, with use of new technologies and information systems, can design Statically determinate structures with various geometry.
2. Perceive, analyze and solve Statically determinate structures (Beams, Frames, Trusses) with or without truss.
3. To analyze and evaluate and draw diagrams of internal forces (N, Q, M) in Statically determinate structures subject to moving loadings.

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Project planning and management

Adapting to new situations
Respect for difference and multiculturalism

Decision-making
Respect for the natural environment

Working independently
Showing social, professional and ethical responsibility and sensitivity to gender issues

Team work
Criticism and self-criticism

Working in an international environment
Production of free, creative and inductive thinking

Working in an interdisciplinary environment

Production of new research ideas

Specifically, students will be able to:

1. Searching, analysis and synthesis of data and information, using the necessary technologies: Study of needs for design various structures subject to various loadings.
2. Decision Making: Description and perception of parts constituting a statically determinate structure.
3. Autonomous work: To apply principles of Mechanics, equilibrium equations and free body diagram in order to evaluate reaction forces and internal forces (N, Q, M) of structure.
4. Team work: To have the ability to distinguish and solve a structure with moving loadings and compare it with same structure subject to stationary loadings.
Theory

The core modules of the course include:

2. Solution and drawing of Internal forces Diagrams (N), (Q) and (M) for simple statically determinate structures.
3. Modelling and solution of rigid three-pinned arch.
4. Modelling and solution of trussed or composed three-pinned arch.
5. Modelling and solution of Gerber – beam and drawing of internal forces diagram.
7. Modelling and solution of indirect loaded structures.
8. Modelling and solution of strengthened beams with system of pinned bars.
9. Modelling and solution of strengthened frames with system of pinned bars.
10. Modelling and solution of hanged structures and bridges.
11. Definition of Influence Lines for a mobile Unit loading.
12. Drawing of Influence Lines for a cantilever beam, a simply supported beam and a frame with evaluation of minimum or maximum value of internal forces (\(N, Q, M\)).
13. Drawing of Influence Lines for a truss beam with evaluation of minimum or maximum value of reaction forces and axial forces.

DELIVERY

Face-to-face, Distance learning, etc.

USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY

Use of ICT in teaching, laboratory education, communication with students

TEACHING METHODS

The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>52</td>
</tr>
<tr>
<td>Exercises</td>
<td>39</td>
</tr>
<tr>
<td>Personal study</td>
<td>109</td>
</tr>
<tr>
<td>Course total</td>
<td>200</td>
</tr>
</tbody>
</table>

STUDENT PERFORMANCE EVALUATION

Description of the evaluation procedure

Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Theory:

Final written examination: 80%, which includes:
- Solution of statically determinate structures

Exercises examination: 20%, which includes:
- Solution of statically determinate structures
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

(5) ATTACHED BIBLIOGRAPHY

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Teaching Notes and Exercises by C. Demakos (in Greek).</td>
</tr>
</tbody>
</table>