COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>ENGINEERING SCHOOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT</td>
<td>DEPARTMENT OF CIVIL ENGINEERING</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDER GRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>2302506</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>2nd</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>MECHANICS I</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

If credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weekly Teaching Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>4</td>
<td>8 (total)</td>
</tr>
<tr>
<td>Laboratory</td>
<td>2</td>
<td>6 (total)</td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

Specialized Knowledge, skills development

PREREQUISITE COURSES:

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek (official)- English (for the Erasmus Students)

IS THE COURSE OFFERED TO ERASMUS STUDENTS

YES

COURSE WEBSITE (URL)

http://vplace.teipir.gr/2302506
LEARNING OUTCOMES

Learning outcomes
The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A
- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

Upon completion of the course, students will be able to:
1. Deeply understand the theory of Structural Mechanics.
2. Study and suggest solutions in problems of Structural Mechanics.
3. Develop personal responsibility and offer scientific opinion.
4. Manage time in an appropriate manner.
5. Develop analytical and synthetic abilities as well as critical evaluation.
6. Present ideas verbally or in written.

Specifically, students will be able to:
1. Understand and utilize the basic principles of Mechanics.
2. Evaluate the centroid of gravity and moments of area of plane shapes.
3. Apply equilibrium equations in structures.
4. Evaluate the redundancy of bar structures.
5. Analyze simple isostatic structures (cantilevers, simply supported beams, continuous beams with internal hinges).

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

- Search for, analysis and synthesis of data and information, with the use of the necessary technology
- Adapting to new situations
- Decision-making
- Working independently
- Team work
- Working in an international environment
- Working in an interdisciplinary environment
- Production of new research ideas
- Project planning and management
- Respect for difference and multiculturalism
- Respect for the natural environment
- Showing social, professional and ethical responsibility and sensitivity to gender issues
- Criticism and self-criticism
- Production of free, creative and inductive thinking
- Others...

Search for, analysis and synthesis of data and information, with the use of the necessary technology,
Adapting to new situations,
Project planning and management,
Production of free, creative and inductive thinking.

(3) SYLLABUS

2. Systems of solid bodies.
3. Force composition and static equilibrium in two and three dimensions.
4. Centroid of gravity of solid bodies and plane shapes.
5. First and second moment of area. Moment of resistance.
6. Friction.
7. Introduction to Statics.
8. Types of structures, supports, internal and external forces.
9. Statically determinate and statically indeterminate structures.
10. Analysis of cantilevers.
11. Analysis of simply supported beams and frames.
12. Diagrams of internal forces.

(1) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Lectures, laboratories, distance learning methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE OF INFORMATION AND</td>
<td>Teaching using ICT, Laboratory Education using ICT,</td>
</tr>
<tr>
<td>COMMUNICATIONS TECHNOLOGY</td>
<td>Communication and Electronic Submission</td>
</tr>
<tr>
<td>USE OF ICT in teaching, laboratory education, communication with students</td>
<td></td>
</tr>
<tr>
<td>TEACHING METHODS</td>
<td>The manner and methods of teaching are described in detail.</td>
</tr>
<tr>
<td></td>
<td>Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.</td>
</tr>
<tr>
<td></td>
<td>The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS</td>
</tr>
<tr>
<td>STUDIO PERFORMANCE EVALUATION</td>
<td>Written examination: 60%</td>
</tr>
<tr>
<td></td>
<td>Laboratory 40% of the total mark</td>
</tr>
<tr>
<td></td>
<td>The evaluation of the laboratory is done by weekly assignments (30% of the laboratory mark) and by written exams (70% of the laboratory mark)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>52</td>
</tr>
<tr>
<td>Laboratories</td>
<td>26</td>
</tr>
<tr>
<td>Study</td>
<td>122</td>
</tr>
<tr>
<td>Course total</td>
<td>200</td>
</tr>
</tbody>
</table>

(2) ATTACHED BIBLIOGRAPHY

1. Arapostathis N, Arapostathis D. Mechanics 1. Ion, 2003.(IN GREEK)