COURSE OUTLINE

(1) GENERAL

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>SCHOOL OF ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTMENT</td>
<td>DEPARTMENT OF CIVIL ENGINEERING</td>
</tr>
<tr>
<td>LEVEL OF STUDIES</td>
<td>UNDER GRADUATE</td>
</tr>
<tr>
<td>COURSE CODE</td>
<td>2306536</td>
</tr>
<tr>
<td>SEMESTER</td>
<td>6th</td>
</tr>
<tr>
<td>COURSE TITLE</td>
<td>DESIGN OF STEEL STRUCTURES</td>
</tr>
</tbody>
</table>

INDEPENDENT TEACHING ACTIVITIES

If credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weekly Teaching Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Design applications</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).

COURSE TYPE

General background, special background, specialised general knowledge, skills development

PREREQUISITE COURSES:

LANGUAGE OF INSTRUCTION and EXAMINATIONS:

Greek (official) (for the Erasmus Students in English)

IS THE COURSE OFFERED TO ERASMUS STUDENTS

YES

COURSE WEBSITE (URL)

http://vplace.teipir.gr/2306536
(2) LEARNING OUTCOMES

Learning outcomes
The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

• Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
• Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
• Guidelines for writing Learning Outcomes

Upon completion of the course, students will be able to:
1. Deeply understand the design of steel structures.
2. Study and suggest solutions in problems of steel design.
3. Develop personal responsibility and offer scientific opinion.
4. Manage time in an appropriate manner.
5. Develop analytical and synthetic abilities as well as critical evaluation.
6. Present ideas verbally or in written.

Specifically, students will be able to:
Design steel structures according to current standards but also to any new ones

General Competences
Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information, with the use of the necessary technology
Adapting to new situations
Decision-making
Working independently
Team work
Working in an international environment
Working in an interdisciplinary environment
Production of new research ideas

Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment
Showing social, professional and ethical responsibility and sensitivity to gender issues
Criticism and self-criticism
Production of free, creative and inductive thinking
Others...

(3) SYLLABUS

Design of steel structures by the use of the relevant codes considering ultimate limit state design, and serviceability design. Capacity design of sections in steel structures under tension, compression, buckling shear and in combination of them. Design of threaded connections of links gibs of friction connections and of welded connection. Design under uniform and variable torsion.

(1) TEACHING and LEARNING METHODS - EVALUATION

<table>
<thead>
<tr>
<th>DELIVERY</th>
<th>Lectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face-to-face, Distance learning, etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY</th>
<th>Teaching using ICT, Laboratory Education using ICT, Communication and Electronic Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of ICT in teaching, laboratory education, communication with students</td>
<td></td>
</tr>
</tbody>
</table>
TEACHING METHODS
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.

The student’s study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Semester workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>26</td>
</tr>
<tr>
<td>Design applications (assignments)</td>
<td>39</td>
</tr>
<tr>
<td>Study</td>
<td>110</td>
</tr>
</tbody>
</table>

Course total 175

STUDENT PERFORMANCE EVALUATION
Description of the evaluation procedure
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other

Specifically-defined evaluation criteria are given, and if and where they are accessible to students.

Written examination: 80%
Design applications (assignments): 20%

(2) ATTACHED BIBLIOGRAPHY

1. ΣΧΕΔΙΑΣΜΟΣ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΑΠΟ ΧΑΛΥΒΑ ΜΕ ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ, ΙΩΑΝΝΗΣ Κ. ΒΑΓΙΑΣ, ΙΩΑΝΝΗΣ Χ. ΕΡΜΟΠΟΥΛΟΣ, ΓΕΩΡΓΙΟΣ Ι. ΙΩΑΝΝΙΔΗΣ *
2. ΚΑΤΑΣΚΕΥΕΣ ΑΠΟ ΧΑΛΥΒΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΣΤΑ ΠΛΑΙΣΙΟ ΤΟΥ ΕΥΡΥΚΩΔΙΚΑ, Χ.Κ.ΜΠΑΝΙΩΤΟΠΟΥΛΟΣ, Θ.Ν. ΝΙΚΟΛΑΙΔΗΣ *